Sets of Type (d1, d2) in projective Hjelmslev planes over Galois Rings

نویسنده

  • Axel Kohnert
چکیده

In this paper we construct sets of type (d1, d2) in the projective Hjelmslev plane. For computational purposes we restrict ourself to planes over Zps with p a prime and s > 1, but the method is described over general Galois rings. The existence of sets of type (d1, d2) is equivalent to the existence of a solution of a Diophantine system of linear equations. To construct these sets we prescribe automorphisms, which allows to reduce the Diophantine system to a feasible size. At least two of the newly constructed sets are ’good’ u−arcs. The size of one of them is close to the known upper bound.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blocking sets of Rédei type in projective Hjelmslev planes

The aim of this paper is to generalize the notion of a Rédei type blocking set to projective Hjelmslev planes. In what follows, we focus on Hjelmslev planes over chain rings of nilpotencey index 2, i.e. chain rings with rad R 6= (0) and (rad R)2 = (0). Thus we have always |R| = q2, where R/ rad R ∼= Fq. Chain rings with this property have been classified in [1, 6]. If q = pr there are exactly r...

متن کامل

New arcs in projective Hjelmslev planes over Galois rings

It is known that some good linear codes over a finite ring (R-linear codes) arise from interesting point constellations in certain projective geometries. For example, the expurgated Nordstrom-Robinson code, a nonlinear binary [14, 6, 6]-code which has higher minimum distance than any linear binary [14, 6]-code, can be constructed from a maximal 2-arc in the projective Hjelmslev plane over Z4. W...

متن کامل

On maximal arcs in projective Hjelmslev planes over chain rings of even characteristic

In this paper, we prove that maximal (k, 2)-arcs in projective Hjelmslev planes over chain rings R of nilpotency index 2 exist if and only if charR = 4. © 2005 Elsevier Inc. All rights reserved.

متن کامل

Spreads in Projective Hjelmslev Spaces over Finite Chain Rings

We prove a necessary and sufficient condition for the existence of spreads in the projective Hjelmslev geometries PHG Rn 1 R . Further, we give a construction of projective Hjelmslev planes from spreads that generalizes the familiar construction of projective planes from spreads in PG n q .

متن کامل

Embeddings of Projective Klingenberg Planes in the Projective Space PG(5,K)

In this paper embeddings of projective Klingenberg planes in a 5-dimensional projective space are classified. It is proved that if a PK-plane is fully embedded in PG(5,K), for some skewfield K, then it is either isomorphic to the Desarguesian projective Klingenberg plane (projective Hjelmslev plane for bijective σ) PH(2,D(K, σ)) over a ring of ordinary or twisted dual numbers or it is a subgeom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008